新版TCGAbiolinks包学习:可视化

使用TCGAbiolinks包探索最新版TCGA数据库

新版TCGAbiolinks包学习:批量下载数据

新版TCGAbiolinks包学习:表达矩阵提取(mRNA/lncRNA/counts/tpm/fpkm)

手动下载的TCGA数据也是可以用TCGAbiolinks包整理的

新版TCGAbiolinks包学习:差异分析

新版TCGAbiolinks包学习:富集分析和生存分析

TCGA的maf突变文件不能下载了?直接用TCGAbiolinks包搞定!

TCGAbiolinks的甲基化数据分析

今天学习下TCGAbiolinks包中的可视化函数。

这些图形都可以使用其他R包进行更好看的可视化,平常大家根本不用,不过作为TCGAbiolinks包完整学习的一部分,在这里简单记录一下。。

<code style="margin-left:0">library(TCGAbiolinks)
suppressMessages(library(SummarizedExperiment))
</code>

热图

可视化差异基因或者差异甲基化。

使用前面推文中得到的COAD的差异基因演示。

<code style="margin-left:0"># 获取表达矩阵
load("TCGA-mRNA/TCGA-COAD_mRNA.Rdata")
se_mrna <- data[rowData(data)$gene_type == "protein_coding",]
coadMatrix <- assay(se_mrna, "unstranded")
coad_coroutliers <- TCGAanalyze_Preprocessing(se_mrna,cor.cut = 0.7)
## Number of outliers: 0
coadNorm <- TCGAanalyze_Normalization(
    tabDF = coad_coroutliers, 
    geneInfo =  geneInfoHT)
## I Need about  127 seconds for this Complete Normalization Upper Quantile  [Processing 80k elements /s]
## Step 1 of 4: newSeqExpressionSet ...
## Step 2 of 4: withinLaneNormalization ...
## Step 3 of 4: betweenLaneNormalization ...
## Step 4 of 4: exprs ...
coadFilt <- TCGAanalyze_Filtering(
    tabDF = coadNorm,
    method = "quantile", 
    qnt.cut =  0.25
)
# 保存下方便以后使用
#save(coadFilt,file = "./output/coadFilt.rdata")

# 准备差异基因
load(file = "./output/coadDEGs.Rdata")
</code>

查看数据:

<code style="margin-left:0">coadFilt[1:4,1:4]
##                 TCGA-NH-A8F7-06A-31R-A41B-07 TCGA-3L-AA1B-01A-11R-A37K-07
## ENSG00000000003                        15299                         7257
## ENSG00000000005                           26                           23
## ENSG00000000419                         5139                         2058
## ENSG00000000457                          614                          734
##                 TCGA-4N-A93T-01A-11R-A37K-07 TCGA-4T-AA8H-01A-11R-A41B-07
## ENSG00000000003                         7125                         2918
## ENSG00000000005                           67                           89
## ENSG00000000419                         2626                          844
## ENSG00000000457                          731                          323
</code>

查看数据:

<code style="margin-left:0">head(coadDEGs)
##                     logFC   logCPM        LR       PValue          FDR
## ENSG00000000419  1.018334 5.864185  58.75510 1.785702e-14 7.381441e-14
## ENSG00000000460  1.423716 3.457955 153.99195 2.325351e-35 3.797553e-34
## ENSG00000000971 -1.052867 4.847858  37.14551 1.096349e-09 3.067592e-09
## ENSG00000001460 -1.006716 3.531623 170.11301 6.990106e-39 1.377268e-37
## ENSG00000001497  1.151358 6.086819 114.28071 1.131077e-26 1.106818e-25
## ENSG00000001617  1.167619 5.505217  51.08214 8.858051e-13 3.195640e-12
##                 gene_name      gene_type
## ENSG00000000419      DPM1 protein_coding
## ENSG00000000460  C1orf112 protein_coding
## ENSG00000000971       CFH protein_coding
## ENSG00000001460     STPG1 protein_coding
## ENSG00000001497     LAS1L protein_coding
## ENSG00000001617    SEMA3F protein_coding
</code>

我们用logFC最大的前500个基因演示:

<code style="margin-left:0">top500 <- coadDEGs[order(abs(coadDEGs$logFC),decreasing =T),][1:500,]
</code>

准备热图需要的表达矩阵:

<code style="margin-left:0">heat.df <- coadFilt[rownames(coadFilt) %in% rownames(top500),]
dim(heat.df)
</code>

准备热图需要的样本信息,必须有一列和表达矩阵的列名相同:

<code style="margin-left:0">coldata <- colData(data)
dim(coldata)
## [1] 521 107

coldata.df <- as.data.frame(subset(coldata, select=c("barcode","sample_type","vital_status","gender",
                                       "ajcc_pathologic_t","ajcc_pathologic_n",
                                       "ajcc_pathologic_m")))

head(coldata.df)
##                                                   barcode         sample_type
## TCGA-A6-5664-01A-21R-1839-07 TCGA-A6-5664-01A-21R-1839-07       Primary Tumor
## TCGA-D5-6530-01A-11R-1723-07 TCGA-D5-6530-01A-11R-1723-07       Primary Tumor
## TCGA-AA-3556-01A-01R-0821-07 TCGA-AA-3556-01A-01R-0821-07       Primary Tumor
## TCGA-AA-3660-11A-01R-1723-07 TCGA-AA-3660-11A-01R-1723-07 Solid Tissue Normal
## TCGA-AA-3818-01A-01R-0905-07 TCGA-AA-3818-01A-01R-0905-07       Primary Tumor
## TCGA-AA-3660-01A-01R-1723-07 TCGA-AA-3660-01A-01R-1723-07       Primary Tumor
##                              vital_status gender ajcc_pathologic_t
## TCGA-A6-5664-01A-21R-1839-07        Alive   male               T4a
## TCGA-D5-6530-01A-11R-1723-07        Alive   male                T2
## TCGA-AA-3556-01A-01R-0821-07        Alive   male                T2
## TCGA-AA-3660-11A-01R-1723-07        Alive female                T3
## TCGA-AA-3818-01A-01R-0905-07         Dead female                T3
## TCGA-AA-3660-01A-01R-1723-07        Alive female                T3
##                              ajcc_pathologic_n ajcc_pathologic_m
## TCGA-A6-5664-01A-21R-1839-07               N2a                MX
## TCGA-D5-6530-01A-11R-1723-07                N0                M0
## TCGA-AA-3556-01A-01R-0821-07                N0                M0
## TCGA-AA-3660-11A-01R-1723-07                N0                M0
## TCGA-AA-3818-01A-01R-0905-07                N0                M0
## TCGA-AA-3660-01A-01R-1723-07                N0                M0
</code>

然后使用TCGAvisualize_Heatmap函数画热图,其实也是complexheatmap的包装:

<code style="margin-left:0">TCGAvisualize_Heatmap(data = heat.df,
                      col.metadata = coldata.df,
                      cluster_rows = T,
                      cluster_columns = T,
                      scale = "row",
                      extremes = seq(-2,2,1),
    color.levels = colorRampPalette(c("green", "black", "red"))(n = 5)
                      )
</code>

会在当前目录生成一张热图:

火山图

使用所有基因的差异信息。

<code style="margin-left:0">load(file = "./output/coadDEGsAll.Rdata")

TCGAVisualize_volcano(x=coadDEGAll$logFC,
                      y=coadDEGAll$FDR, # 纵坐标会自动变成-log10
                      x.cut = c(-1,1),
                      y.cut = 2
                      )
</code>

会在当前目录下保存火山图,这个图纵坐标太大了!这样发文章是不太行的哦!

火山图

PCA图

<code style="margin-left:0">rm(list = ls())
load(file = "./output/coadFilt.rdata")
load(file = "./output/coadDEGsAll.Rdata")
</code>

定义下样本类型:

<code style="margin-left:0"># normal
group1 <- TCGAquery_SampleTypes(colnames(coadFilt), typesample = c("NT"))

# tumor
group2 <- setdiff(colnames(coadFilt), group1)
</code>

需要获得一个差异基因table:

<code style="margin-left:0"># DEGs table with expression values in normal and tumor samples
coadDEGsFiltLevel <- TCGAanalyze_LevelTab(
    FC_FDR_table_mRNA = coadDEGAll,
    typeCond1 = "Normal",
    typeCond2 = "Tumor",
    TableCond1 = coadFilt[,group1],
    TableCond2 = coadFilt[,group2]
)

head(coadDEGsFiltLevel)
##                            mRNA     logFC          FDR    Delta    Normal
## ENSG00000161016 ENSG00000161016 1.0634492 4.608668e-12 74483.67  70039.71
## ENSG00000167658 ENSG00000167658 0.4903969 2.389951e-05 65654.67 133880.68
## ENSG00000137154 ENSG00000137154 0.6959504 2.038518e-08 62058.29  89170.56
## ENSG00000089157 ENSG00000089157 0.7335765 1.574363e-09 55289.82  75370.22
## ENSG00000108821 ENSG00000108821 2.7959748 6.188722e-22 55126.53  19716.39
## ENSG00000111640 ENSG00000111640 0.9146113 1.156871e-12 54971.11  60103.24
##                     Tumor     start       end
## ENSG00000161016  99007.33 144789765 144792587
## ENSG00000167658 126985.97   3976056   3985463
## ENSG00000137154 103264.10  19375715  19380236
## ENSG00000089157  86214.63 120196699 120201235
## ENSG00000108821 105676.55  50184101  50201632
## ENSG00000111640  74969.70   6534512   6538374
</code>

PCA分析并画图:

<code style="margin-left:0">pca <- TCGAvisualize_PCA(
    dataFilt = coadFilt,
    dataDEGsFiltLevel = coadDEGsFiltLevel,
    ntopgenes = 1000, 
    group1 = group1,
    group2 =  group2
)
</code>

PCA

突变全景图

完全就是封装了maftools包,并且帮助文档里还没更新,还写着TCGAquery_maf,但是这个函数在最新版本的TCGAbiolinks里面已经没有了。。

maftools需要的文件如何自己整理
TCGA的maf突变文件不能下载了?直接用TCGAbiolinks包搞定!

<code style="margin-left:0">rm(list = ls())
# 加载突变数据
load(file = "./TCGA-SNP/TCGA-COAD_SNP.Rdata")
coad.maf <- data
</code>

直接画就行,和maftools一模一样,这里就不多介绍了,大家去用maftools吧。

<code style="margin-left:0">TCGAvisualize_oncoprint(mut = coad.maf,
                        genes = coad.maf$Hugo_Symbol[1:30]
                        )
</code>

突变全景图

甲基化组间表达量/旭日图/条形图

可以参考之前的推文:

TCGAbiolinks的甲基化数据分析
新版TCGAbiolinks包学习:富集分析和生存分析

不得不说这些可视化函数有点鸡肋,不借助其他包是完全可以画出来图的,但是里面又都是封装的其他R包,而且还不如原装的R包好用!

未经允许不得转载:木盒主机 » 新版TCGAbiolinks包学习:可视化

赞 (0)

相关推荐

    暂无内容!