目录
一、什么是StarRocks?
二、适用场景
OLAP 多维分析:
实时数据仓库:
高并发查询:
统一分析 :
三、系统架构
系统架构图
数据管理
四、StarRocks表设计
列式存储
稀疏索引
加速数据处理
五、数据模型
明细模型
聚合模型
更新模型
主键模型
StarRocks的架构简洁,整个系统的核心只有FE(Frontend)、BE(Backend)两类进程,不依赖任何外部组件,方便部署与维护。同时,FE和BE模块都可以在线水平扩展,元数据和数据都有副本机制,确保整个系统无单点。
FE(Frontend)是StarRocks的前端节点,负责管理元数据,管理客户端连接,进行查询规划,查询调度等工作。FE根据配置会有两种角色:Follower和Observer。
- Follower会通过类Paxos的BDBJE协议选主出一个Leader(实现选主需要集群中有半数以上的Follower实例存活),只有Leader会对元数据进行写操作。非Leader节点会自动的将元数据写入请求路由到Leader节点。每次元数据写入时,必须有多数Follower成功才能确认是写入成功。
- Observer不参与选主操作,只会异步同步并且回放日志,主要用于扩展集群的查询并发能力。每个FE节点都会在内存保留一份完整的元数据,这样每个FE节点都能够提供无差别的服务。
BE(Backend)是StarRocks的后端节点,负责数据存储以及SQL执行等工作。
数据存储方面,StarRocks的BE节点都是完全对等的,FE按照一定策略将数据分配到对应的BE节点。在数据导入时,数据会直接写入到BE节点,不会通过FE中转,BE负责将导入数据写成对应的格式以及生成相关索引。
在执行SQL计算时,一条SQL语句首先会按照具体的语义规划成逻辑执行单元,然后再按照数据的分布情况拆分成具体的物理执行单元。物理执行单元会在数据存储的节点上进行执行,这样可以避免数据的传输与拷贝,从而能够得到极致的查询性能。
StarRocks整体对外暴露的是一个MySQL协议接口,支持标准SQL语法。用户通过已有的MySQL客户端能够方便地对StarRocks里的数据进行查询和分析。
数据管理
在StarRocks里,一张表的数据会被拆分成多个Tablet,而每个Tablet都会以多副本的形式存储在BE节点中。StarRocks通过分区、分桶两种划分方式将Table划分成Tablet。通过分区机制(Sharding),一张表可以被划分成多个分区,如将一张表按照时间来进行分区,粒度可以是一天,或者一周等。一个分区内的数据可以根据一列、或者多列进行分桶,将数据切分成多个Tablet。用户可以自行指定分桶的大小。StarRocks会管理好每个Tablet副本的分布信息。
由于一张表被切分成了多个Tablet,StarRocks在执行SQL语句时,可以对所有Tablet实现并发处理,从而充分的利用多机、多核提供的计算能力。此外,由于每个表可以有不同的表数据切分方式,根据每个表数据量的不同,切分成的Tablet数也可以不同。这样就能够实现在一个大规模集群内,对于不同的表使用不同的资源来进行服务。用户也可以利用StarRocks数据的切分方式,将高并发请求压力分摊到多个物理节点,从而可以通过增加物理节点的方式来扩展系统支持高并发的能力。
Tablet的分布方式与具体的物理节点没有相关性。在BE节点规模发生变化时,比如在扩容、缩容时,StarRocks可以做到无需停止服务,直接完成节点的增减。节点的变化会触发Tablet的自动迁移。当节点增加时,一部分Tablet会在后台自动被均衡到新增的节点,从而使得数据能够在集群内分布的更加均衡。在节点减少时,下线机器上的Tablet会被自动均衡到其他节点,从而自动保证数据的副本数不变。所以,管理员能够非常容易的实现StarRocks的弹性伸缩的操作,不需要手工进行任何数据重分布的操作。
StarRocks支持Tablet多副本存储,默认副本数为三个。多副本够保证数据存储的高可靠,以及服务的高可用。在使用三副本的情况下,一个节点的异常不会影响服务的可用性,集群的读、写服务仍然能够正常进行。另外,增加副本数还有助于提高系统支持高并发查询的能力。
四、StarRocks表设计
列式存储
StarRocks的表和关系型数据相同, 由行和列构成,每行数据对应用户一条记录, 每列数据有相同数据类型。一张表的列可以分为维度列(也成为key列)和指标列(value列), 维度列用于分组和排序, 指标列可通过聚合函数SUM, COUNT, MIN, MAX, REPLACE, HLL_UNION, BITMAP_UNION等累加起来。 StarRocks的表也可以认为是多维的key到多维指标的映射。
查询时, 如果指定了维度列的等值条件或者范围条件, 并且这些条件中维度列可构成表维度列的前缀, 则可以利用数据的有序性, 使用range-scan快速锁定目标行. 例如: 对于表table1: (event_day, siteid, citycode, username)➜(pv); 当查询条件为event_day > 2020-09-18 and siteid = 2, 则可以使用范围查找; 如果指定条件为citycode = 4 and username in ["Andy", "Boby", "Christian", "StarRocks"], 则无法使用范围查找。
稀疏索引
表中数据组织有主要由三部分构成:
- shortkey index表: 表中数据每1024行, 构成一个逻辑block. 每个逻辑block在shortkey index表中存储一项索引, 内容为表的维度列的前缀, 并且不超过36字节. shortkey index为稀疏索引, 用数据行的维度列的前缀查找索引表, 可以确定该行数据所在逻辑块的起始行号。
- Per-column data block: 表中每一列数据按64KB分块存储, 数据块作为一个单位单独编码压缩, 也作为IO单位, 整体写回设备或者读出。
- Per-column cardinal index: 表中的每列数据有各自的行号索引表, 列的数据块和行号索引项一一对应, 索引项由数据块的起始行号和数据块的位置和长度信息构成, 用数据行的行号查找行号索引表, 可以获取包含该行号的数据块所在位置, 读取目标数据块后, 可以进一步查找数据。
由此可见, 查找维度列的前缀的查找过程为: 先查找shortkey index, 获得逻辑块的起始行号, 查找维度列的行号索引, 获得目标列的数据块, 读取数据块, 然后解压解码, 从数据块中找到维度列前缀对应的数据项。
加速数据处理
- 预先聚合: StarRocks支持聚合模型, 维度列取值相同数据行可合并一行, 合并后数据行的维度列取值不变, 指标列的取值为这些数据行的聚合结果, 用户需要给指标列指定聚合函数. 通过预先聚合, 可以加速聚合操作。
- 分区分桶: 事实上StarRocks的表被划分成tablet, 每个tablet多副本冗余存储在BE上, BE和tablet的数量可以根据计算资源和数据规模而弹性伸缩. 查询时, 多台BE可并行地查找tablet快速获取数据. 此外, tablet的副本可复制和迁移, 增强了数据的可靠性, 避免了数据倾斜. 总之, 分区分桶保证了数据访问的高效性和稳定性。
- RollUp表索引: shortkey index可加速数据查找, 然后shortkey index依赖维度列排列次序. 如果使用非前缀的维度列构造查找谓词, 则无法使用shortkey index. 用户可以为数据表创建若干RollUp表索引, RollUp表索引的数据组织和存储和数据表相同, 但RollUp表拥有自身的shortkey index. 用户创建RollUp表索引时, 可选择聚合的粒度, 列的数量, 维度列的次序; 使频繁使用的查询条件能够命中相应的RollUp表索引。
- 列级别的索引技术: Bloomfilter可快速判断数据块中不含所查找值, ZoneMap通过数据范围快速过滤待查找值, Bitmap索引可快速计算出枚举类型的列满足一定条件的行。
五、数据模型
数据模型分为四类:明细模型(Duplicate Key)、聚合模型(Aggregate Key)、更新模型(Unique Key)、主键模型(Primary Key)
明细模型
关键字 DUPLICATE KEY
CREATE TABLE IF NOT EXISTS table1 (
event_time DATETIME NOT NULL COMMENT "datetime of event",
event_type INT NOT NULL COMMENT "type of event",
user_id INT COMMENT "id of user",
device_code INT COMMENT "device of ",
channel INT COMMENT ""
)
DUPLICATE KEY(event_time, event_type)
DISTRIBUTED BY HASH(user_id) BUCKETS 8
聚合模型
关键字 AGGREGATE KEY (默认全表排序,一般可省略)
CREATE TABLE IF NOT EXISTS table2 (
site_id LARGEINT NOT NULL COMMENT "id of site",
date DATE NOT NULL COMMENT "time of event",
city_code VARCHAR(20) COMMENT "city_code of user",
pv BIGINT SUM DEFAULT "0" COMMENT "total page views"
)
DISTRIBUTED BY HASH(site_id) BUCKETS 8;
更新模型
关键字 UNIQUE KEY
CREATE TABLE IF NOT EXISTS table3 (
create_time DATE NOT NULL COMMENT "create time of an order",
order_id BIGINT NOT NULL COMMENT "id of an order",
order_state INT COMMENT "state of an order",
total_price BIGINT COMMENT "price of an order"
)
UNIQUE KEY(create_time, order_id)
DISTRIBUTED BY HASH(order_id) BUCKETS 8
StarRocks存储内部会给每一个批次导入数据分配一个版本号, 同一主键的数据可能有多个版本, 查询时最大(最新)版本的数据胜出。
主键模型
目前primary主键存储在内存中,为防止滥用造成内存占满,限制主键字段长度全部加起来编码后不能超过127字节。
主要适用场景有:
1.实时对接 TP 数据至 StarRocks。
2.利用部分列更新轻松实现多流 JOIN
关键字 PRIMARY KEY
create table table4 (
dt date NOT NULL,
order_id bigint NOT NULL,
user_id int NOT NULL,
merchant_id int NOT NULL,
good_id int NOT NULL,
good_name string NOT NULL,
price int NOT NULL,
cnt int NOT NULL,
revenue int NOT NULL,
state tinyint NOT NULL
) PRIMARY KEY (dt, order_id)
PARTITION BY RANGE(`dt`) (
PARTITION p20210820 VALUES [('2021-08-20'), ('2021-08-21')),
PARTITION p20210821 VALUES [('2021-08-21'), ('2021-08-22')),
...
PARTITION p20210929 VALUES [('2021-09-29'), ('2021-09-30')),
PARTITION p20210930 VALUES [('2021-09-30'), ('2021-10-01'))
) DISTRIBUTED BY HASH(order_id) BUCKETS 4
PROPERTIES("replication_num" = "3");
注意:
- 主键列仅支持类型: boolean, tinyint, smallint, int, bigint, largeint, string/varchar, date, datetime, 不允许NULL。
- 分区列(partition)、分桶列(bucket)必须在主键列中。
- 和更新模型不同,主键模型允许为非主键列创建bitmap等索引,注意需要建表时指定。
- 由于其列值可能会更新,主键模型目前还不支持rollup index和物化视图。
- 暂不支持使用
ALTER TABLE
修改列类型。ALTER TABLE
的相关语法说明和示例,请参见 ALTER TABLE。 - 在设计表时应尽量减少主键的列数和大小以节约内存,建议使用int/bigint等占用空间少的类型。暂时不建议使用varchar。建议提前根据表的行数和主键列类型来预估内存使用量,避免出现OOM。内存估算举例:
a. 假设表的主键为:dt date (4byte), id bigint(8byte) = 12byte
b. 假设热数据有1000W行, 存储3副本
c. 则内存占用:(12 + 9(每行固定开销) ) * 1000W * 3 * 1.5(hash表平均额外开销) = 945M
官方文档:StarRocks @ StarRocks_intro @ StarRocks Docs
未经允许不得转载:木盒主机 » StarRocks学习-初识